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ABSTRACT 

In this search, it has been studied the properties of the magneto acoustic shock waves in ultra-dense quantum 

plasma and its including ions and electrons and positrons after taking effect of ion temperature on phase velocity of 

the magneto sonic wave and , this is by the ion pressure into momentum equation of ion fluid.  

Moreover, it has been studied that waves by using reductive perturbation method. The results have been 

compared to the shock waves ones with what others have reached in related references.  
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1. INTRODUCTION 

Nonlinear structures arise when the plasma is in a disturbed state. This condition is automatically obtained 

in cosmic plasma or laboratory plasma due to internal or external self-disturbances. This can be experimentally 

guided by a laser beam on laboratory plasma under controlled conditions. Nonlinearity can't be ignored when waves 

are large. Nonlinearity can be obtained from the generation of harmonic generation (Antoine, 1996) harmonies 

involving fluid advection and nonlinear Lorentz force (Smolyakov, 2002) and limiting the molecules in the Wave 

potential and the Ponder motive force. Nonlinearity in plasma contributes to the localization of waves, leading to the 

emergence of different types of coherent small volume waves. This method maintains a balance between waves 

steepening resulting from non-linearity and spreading resulting in dispersion and it can reduce a range of nonlinear 

equations and obtain a single one. Using Schrödinger's nonlinear equation, KDV equation, the modified KDV 

equation, and other nonlinear structures, these include( solitary waves, shock waves, double layers), Which is 

composed of contiguous layers for which two adjacent layers are charged with two opposite charges, leading to the 

emergence of an electric field that accelerates, delays or reverses charged particles. "Nonlinear waves are called 

solitons when dispersion is equated with nonlinearity".   

There are some plasma types where the effects of dissipative energy are similar or greater than the dispersive 

effects. In this case, nonlinear plasma waves appear as shock structures rather than soliton structures. A study of 

plasma shocks began in 1950 with attention to molten plasma and shocks from explosions in the upper atmosphere. 

Astronomical environments contain several different types of shock waves. Such as supernovae, explosion waves 

traveling through interstellar environments, and arc shock caused by the collision of solar wind with the 

magnetosphere and shock waves caused by the collisions of galaxies (Paschmann, 1980).  

The reductive perturbation method (Dimiray, 2008) can be used in the case of equations can also be used 

.Plasma (e-p-i) is widely found in nature, where it can arise in the interior of the accretion discs "the growth of the 

astrocytic material in the form of disks" and in the vicinity of black holes, the magnetic wrappers of neutron stars 

And in the nuclei of active galaxies and even in solar flare plasma. Many facts indicate that our world was a warm 

plasma (epi) during the first minutes of its existence, and this plasma can be produced by a very short and intense 

laser pulse in the material and by the photo production of the pairs by dispersing the photons on the nuclei, These 

plasma are also formed in the tachymac and other magnetic constituents of plasma. 

Roy (2009), studied the effect of ionic temperature on large-volume ionic acoustic solitons in electron-ion 

plasma, they used fake potential method. Das in 2014, studied the effect of ionic temperature on dust – ionic- acoustic 

waves in non-magnetized and hot plasma, using in this study the method of reduced disturbance to obtain the KDV 

equation with soliton solutions. 

The importance of this research is to study the effect of ionic temperature on the Spread of quantum magnetic 

acoustic shock waves in a magnetized and ultra-dense plasma( e-p-i), where plasma is treated here as a carrier fluid 

consisting of positive and negative charges and which is submitted to a magnetic field using (QMHD). The aim of 

this study is to study the speed of these waves, based on the equations used in the reference (Hussain, 2013), to obtain 

the KDVB equation, which has conclusive solutions that take the form of a shock wave and comparing these solutions 

with what it was recently reached. 

2. METHODS AND MATERIALS 

 Using (QMHD) that control the movement of electrons, positrons and ions in quantum magnetized plasma.  

 Studying the previous equations in the plane coordinates.  

 Using the reductive perturbation Method to obtain the equation of KDVB. 

In this work, we used QMHD equations used by Hussain (2013). They used the reductive perturbation 

method to reduce the set of QMHD equations to a nonlinear differential equation of KDVB, This method is used in 
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the case of small-capacity shock waves, but they neglected in their study the effect of ionic temperature. In this work 

we take the ionic temperature into consideration and we will study its effect on the magnetic acoustic shock waves 

at the plane coordinates by inserting the ion pressure limit to the right side of the ion movement equation. The effects 

of ionic pressure resulting from Fermi ionic temperature can be neglected. 

The continuity equation of the studied ions is given in the following relation: 

Ions 
𝜕𝑛i

∂𝑡
+ ∇(𝑛i𝑣𝑖⃗⃗⃗  ) = 0                                          (1)  

Ions intensity: 𝑛𝑖, ion speed: 𝑣𝑖⃗⃗⃗   
The equation of the movement is expressed as following:  

𝜕𝑣𝑖

∂𝑡
+ 𝑣𝑖⃗⃗⃗  ∇⃗⃗ 𝑣𝑖⃗⃗⃗  =

e

𝑚i
[E⃗⃗ + 𝑣𝑖⃗⃗⃗  × B⃗⃗ ] −

1

𝑚i𝑛i
∇P𝑖 +  𝜈∇2𝑣𝑖⃗⃗⃗           (2) 

e ion charge: 𝑚i : ion mass E⃗⃗ : electric field B⃗⃗  :Magnetic field 

Refers to the kinetic viscosity of ions, dynamic viscosity∶  𝜈 =
µ

𝑚𝑖𝑛𝑖
 

The continuity equation for the quantum liquid consisting of decomposed electrons is as following 
𝜕𝑛𝑒

∂𝑡
+ ∇(𝑛𝑒𝑣𝑒⃗⃗  ⃗) = 0                                                                     (3) 

The equation of the motion of the electron is expressed after adding the quantum limit  

[
ћ2

2𝑚e
2
∇⃗⃗ (

1

√𝑛e

∇2√𝑛e)] 

Associated with the Boom voltage as following:  

0= −𝑒[E⃗⃗ + 𝑣𝑒⃗⃗  ⃗ × B⃗⃗ ] −
1

𝑛𝑒
∇P𝐹𝑒 +

ћ2

2𝑚𝑒
∇(

1

√𝑛e
∇2√𝑛e)          (4) 

Fermi pressure of the electronic liquid: P𝐹𝑒  

Two equations of to the continuity and movement of the quantum fluid consisting of decomposed positrons 

can also be expressed as following: 
𝜕𝑛𝑝

∂𝑡
+ ∇(𝑛𝑝𝑣𝑝⃗⃗⃗⃗ ) = 0                                                                      (5) 

𝑛𝑝: intensity of positrons, 𝜗 𝑝 : Positron Speed 

0 = 𝑒[E⃗⃗ + 𝑣𝑝⃗⃗⃗⃗ × B⃗⃗ ] −
1

𝑛𝑝
∇P𝐹𝑝 +

ћ2

2𝑚𝑝
∇(

1

√𝑛p

∇2√𝑛p)      (6) 

𝑚p:positron mass,  P𝐹𝑝: Fermi pressure of positrons  

We add the equations above to the following Maxwell equations:    

∇⃗⃗ × E⃗⃗ = −
1

c

∂B⃗⃗ 

∂𝑡
                                                                         (7) 

∇⃗⃗ × B⃗⃗ =
4π

c
j⃑ +

1

c

∂E⃑⃗⃗

∂t
                                                                (8) 

We use the idiom of the Fermi decomposition P𝐹𝑠 , which is expressed as following:  

P𝐹𝑠 =
ћ2(3π2)2/3

5ms
𝑛s

5/3
                                                              (9) 

S = (𝑒, 𝑝) 

𝑛i ,𝑛𝑒 , ,𝑣𝑖⃗⃗⃗   𝑣𝑒⃗⃗  ⃗, , E⃗⃗⃗   B⃗⃗  
Refer to intensity of ions, electrons, speed of ionic and electronic liquids, and electric and magnetic fields in 

order and can be organized according to time and position as following: 

B⃗⃗ →
B⃗⃗ 

B0
, 𝑟 →

r𝜔𝑖

𝑉𝐴𝑖
 , 𝑡 → 𝑡𝜔𝑖, E⃗⃗ →

eE⃗⃗ 

𝑚𝑉𝐴𝑖𝜔𝑖
, 𝑛j →

𝑛j

𝑛0
, 𝑣j⃗⃗  →

𝑣j⃗⃗  

Vs
 

j = 𝑒, 𝑖, 𝑝 , 𝒏𝟎 ∶ The intensity of the plasma components in the state of equilibrium before being exposed to 

external influences “undisturbed state”. 

𝜔𝑖 =
𝑒B0

𝑚𝑖
∶ The plasmatic frequency because of the vibration of ions around their equilibrium state. These 

vibrations result from the instantaneous plasma disorder away from the equilibrium, in the form of 𝝎𝒊 =
𝒆𝐁𝟎

𝒎𝒊
∶ 

The plasmatic frequency because of the vibration of ions around their equilibrium state. These vibrations 

result from the instantaneous plasma disorder away from the equilibrium, in the form of a displacement in negative 

or positive charges and an electric field is resulted in the direction corresponding to the rebalance of plasma.  
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B0 Is the internal magnetic field resulting from the constant movement of positive and negative charges in 

the plasma. 

𝑉𝐴𝑖 =
B0

√4π𝑚i𝑛i0
 : Alven speed a low frequency ionic wave is formed in the plasmatic environment under the 

influence of the magnetic field. 

𝑛𝑖0 : Intensity of ions in the balance state of the plasma. 

𝑉𝑆 = √
𝐾𝐵 𝑇𝐹𝑒

𝑚𝑖
 : The velocity of the ionic sound, is a longitudinal wave resulted from the compressions and 

rarefaction that affect the ions in the studied environment. 

Boltzmann constant  : 𝐾𝐵 

𝑇𝐹𝑒: Fermi temperature of the electron. 

Equations from 1 to 8 take the following form: 
𝜕𝑛i

∂𝑡
+ ∇(𝑛i𝑣𝑖⃗⃗⃗  ) = 0 (10) 

𝜕𝑣𝑖⃗⃗⃗  

∂𝑡
+ 𝑣𝑖⃗⃗⃗  ∇𝑣𝑖⃗⃗⃗  = [E⃗⃗ + 𝑣𝑖⃗⃗⃗  × B⃗⃗ ] −

2β

5
σ1

∇𝑛
𝑖

5
3

𝑛𝑖
+ 𝜂

𝜕2𝑣𝑖

𝜕𝑥2
                               (11) 

𝜕𝑛𝑒

∂𝑡
+ ∇(𝑛𝑒𝑣𝑒⃗⃗  ⃗) = 0 (12) 

0 = −[E⃗⃗ + 𝑣𝑒⃗⃗  ⃗ × B⃗⃗ ] −
2β

5

∇𝑛e

5
3

𝑛𝑒
+

He
2

2
∇(

1

√𝑛e

∇2√𝑛e)                         (13) 

𝜕𝑛𝑝

∂𝑡
+ ∇(𝑛𝑝𝑣𝑝⃗⃗⃗⃗ ) = 0 (14) 

0 = [E⃗⃗ + 𝑣𝑝⃗⃗⃗⃗ × B⃗⃗ ] −
2β

5
σ

∇𝑛p

5
3

𝑛𝑝
+

Hp
2

2
∇(

1

√𝑛p

∇2√𝑛p)                          (15) 

∇⃗⃗ × E⃗⃗ = −
∂B⃗⃗ 

∂𝑡
                                                                                                  (16) 

∇⃗⃗ × B⃗⃗ = 𝑛i𝑣𝑖⃗⃗⃗  +
𝑝

1 − 𝑝
𝑛𝑝𝑣𝑝⃗⃗⃗⃗ −

1

1 − 𝑝
𝑛𝑒𝑣𝑒⃗⃗  ⃗ + δ

∂E⃗⃗ 

∂𝑡
                                  (17) 

β = Vs
2/𝑉𝐴𝑖

2  : Called Plasma beta , this proportion is a result of the distribution of plasma when it exposed 

to magnetic fields. 

Quantitative parameter: H =
ћωi

(memi)
1/2VAi

2 

σ =
TFp

TFe
, p =

npo

ne0
 ,δ =

VAi
2

c2   , σ1 =
Ti

TFe
 

TFP   : Fermi temperature of positron 

TFe  : electron Fermi temperature of 

Normalized ion kinematic viscosity   : 𝜂 =
𝜈𝜔𝑖

𝑉𝐴𝑖
2 

Assuming that the electric field is located in (x, y) and magnetic field on the z-axis applicable, magnetic 

field can be expressed like: B⃗⃗ = [𝐵0 + 𝐵(𝑧, 𝑡)]𝑧̂. 

𝐵0 : The internal magnetic field resulting from the constant movement of positive and negative charges in 

the plasma. 
B (z, t): The external magnetic field that affect the environment of plasma. 

We assume that it affects according to z−, vector k⃗  It applies to the axis x− which means  

 ∇⃗⃗ (∂x, 0,0). Using Cartesian coordinates , from equations (10-17) we can have these following equations: 
𝜕𝑛i

∂𝑡
+

𝜕

∂𝑥
(𝑛i𝑣𝑖𝑥) = 0                                                                               (18) 

𝜕𝑣𝑖𝑥

𝜕𝑡
+ 𝑣𝑖𝑥

∂𝑣𝑖𝑥

∂𝑥
= E𝑥 + 𝑣𝑖𝑦Bz −

2β

5𝑛𝑖
σ1  

∇𝑛
𝑖

5
3

𝑛𝑖
+  𝜂

𝜕2𝑣𝑖𝑥

𝜕𝑥2
                (19) 

𝜕𝑣𝑖𝑦

∂𝑡
+ 𝑣𝑖𝑦

∂𝑣𝑖𝑦

∂𝑥
= E𝑦 − 𝑣𝑖𝑥Bz +  𝜂

𝜕2𝑣𝑖𝑦

𝜕𝑥2
                                          (20) 
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𝜕𝑛𝑒

∂𝑡
+

𝜕

∂𝑥
(𝑛𝑒𝑣𝑒𝑥) = 0                                                                              (21) 

0 = −E𝑥 − 𝑣𝑒𝑦Bz −
2β

5

∇𝑛e

5
3

𝑛𝑒
+

He
2

2

∂

∂𝑥
(

1

√𝑛e

∂2

∂𝑥2 √𝑛e)                   (22) 

0 = −E𝑦 + 𝑣𝑒𝑥Bz                                                                                       (23) 
𝜕𝑛𝑝

∂𝑡
+

𝜕

∂𝑥
(𝑛𝑝𝑣𝑝𝑥) = 0                                                                              (24) 

0 = E𝑥 + 𝑣𝑝𝑦Bz −
2β

5

∇𝑛p

5
3

𝑛𝑝
+

Hp
2

2

∂

∂𝑥
(

1

√𝑛p

∂2

∂𝑥2 √𝑛p)                     (25) 

0 = E𝑦 − 𝑣𝑝𝑥Bz                                                                                            (26) 

𝜕Bz

∂𝑡
+

∂E𝑦

∂𝑥
= 0                                                                                               (27) 

−
𝜕Bz

∂𝑥
= 𝑛i𝑣𝑖𝑦 +

𝑝

1 − 𝑝
𝑛p𝑣𝑝𝑦 −

1

1 − 𝑝
𝑛𝑒𝑣𝑒𝑦 + δ 

∂E𝑦

∂𝑡
                         (28) 

0 = 𝑛i𝑣𝑖𝑥 +
𝑝

1 − 𝑝
𝑛p𝑣𝑝𝑥 −

1

1 − 𝑝
𝑛𝑒𝑣𝑒𝑥 + δ 

∂E𝑥

∂𝑡
                                      (29) 

KDVB equation: To study the magnetized plasma spread of the magneto acoustic disorders in high – intensity 

magnetic plasma, these two independent variables (t), (x) can be replaced with functional variables that Ensure the 

movement to referential frame moves at u speed to a constant frame (13) which is expressed as following: 

𝝃 = 𝝐
𝟏
𝟐(𝒙 − 𝝑𝒎𝒕) , 𝝉 = 𝝐

𝟑
𝟐𝒕

𝝏

𝛛𝒙
= 𝝐

𝟏
𝟐

𝝏

𝛛𝝃
 ,

𝝏

𝛛𝒕
= −𝝑𝒎𝝐

𝟏
𝟐

𝝏

𝛛𝝃
+ 𝝐

𝟑
𝟐

𝝏

𝛛𝝉

}                  (30) 

  t: time , 𝜖 ∶ minimal parameter , It enters as a multiplication factor of different grades of 𝑛i . , 𝑛𝑒 , , 𝜗𝑖𝑥 𝜗𝑒𝑥 

𝜗𝑖𝑦 ,  𝜗𝑒𝑦 , , 𝐸𝑥 , 𝐸𝑦 , 𝐵z physical quantities 

𝑣𝑚 ∶ Speed of shock wave phase. We can have the following equations by the compensation of equation (30) 

in (18 to 29):  

−𝑣m𝜖
1
2
𝜕𝑛i

∂𝜉
+ 𝜖

3
2
𝜕𝑛i

∂𝜏
+ 𝜖

1
2

𝜕

∂𝜉
(𝑛i𝑣𝑖𝑥) = 0                                                              (31) 

−𝑣m𝜖
1
2
𝜕𝑣𝑖𝑥

𝜕𝜉
+ 𝜖

3
2
𝜕𝑣𝑖𝑥

𝜕𝜏
+ 𝜖

1
2𝑣𝑖𝑥

∂𝑣𝑖𝑥

∂𝜉
= E𝑥 + 𝑣𝑖𝑦Bz − 𝜖

1
2  

2β

5𝑛𝑖
σ1  

∂𝑛
𝑖

5
3

∂𝜉
+ 𝜂0 𝜖

3
2
𝜕2𝑣𝑖𝑥

𝜕𝜉2
 (32) 

−𝑣m𝜖
1
2
𝜕𝑣𝑖𝑦

∂𝜉
+ 𝜖

3
2
𝜕𝑣𝑖𝑦

𝜕𝜏
+ 𝜖

1
2𝑣𝑖𝑦

∂𝑣𝑖𝑦

∂𝜉
= E𝑦 − 𝑣𝑖𝑥Bz + 𝜂0 𝜖

3
2                                (33) 

−𝑣m𝜖
1
2
𝜕𝑛𝑒

∂𝜉
+ 𝜖

3
2
𝜕𝑛𝑒

∂𝜏
+ 𝜖

1
2

𝜕

∂𝜉
(𝑛𝑒𝑣𝑒𝑥) = 0                                                              (34) 

0 = −E𝑥 − 𝑣𝑒𝑦Bz − 𝜖
1
2
2β

5

∂𝑛e

5
3

∂𝜉

𝑛e
+

He
2

2
𝜖

1
2

∂

∂𝜉
(

1

√𝑛e

𝜖
∂2

∂𝜉2 √𝑛e)                            (35) 

0 = −E𝑦 + 𝑣𝑒𝑥Bz                                                                                                                (36) 

−𝑣m𝜖
1
2
𝜕𝑛𝑝

∂𝜉
+ 𝜖

3
2
𝜕𝑛𝑝

∂𝜏
+ 𝜖

1
2

𝜕

∂𝜉
(𝑛𝑝𝑣𝑝𝑥) = 0                                                                   (37) 

0 = E𝑥 + 𝑣𝑝𝑦Bz − 𝜖
1
2
2β

5

∂𝑛p

5
3

∂𝜉

𝑛p
+

Hp
2

2
𝜖

1
2

∂

∂𝜉
(

1

√𝑛p

𝜖
∂2

∂𝜉2 √𝑛p)                                    (38) 

0 = E𝑦 − 𝑣𝑝𝑥Bz                                                                                                                        (39) 

−𝑣m𝜖
1
2
𝜕Bz

∂𝜉
+ 𝜖

3
2
𝜕Bz

∂𝜏
+ 𝜖

1
2
∂E𝑦

∂𝜉
= 0                                                                                     (40) 

−𝜖
1
2
𝜕Bz

∂𝜉
= 𝑛i𝑣𝑖𝑦 +

𝑝

1 − 𝑝
𝑛p𝑣𝑝𝑦 −

1

1 − 𝑝
𝑛𝑒𝑣𝑒𝑦 − 𝑣mδ𝜖

1
2
𝜕E𝑦

∂𝜉
+ 𝜖

3
2δ

𝜕E𝑦

∂𝜏
                  (41) 
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0 = 𝑛i𝑣𝑖𝑥 +
𝑝

1 − 𝑝
𝑛p𝑣𝑝𝑥 −

1

1 − 𝑝
𝑛𝑒𝑣𝑒𝑥 − 𝑣mδ𝜖

1
2
𝜕E𝑥

∂𝜉
+ 𝜖

3
2δ

𝜕E𝑥

∂𝜏
                               (42) 

Values change because of external factors which affect the environment of plasma, Such as exposure to 

electromagnetic waves with high frequencies (microwave waves, laser beams and other influences) which lead in 

turn to not linear forces such as the slow down – push force, Which in turn leads to an electric field with low intensity 

added to the original electric field, Which in turn is reflected in other physical quantities and their values change. 

 Corrective limits from different grades in condition of that they must be less than 1 are entered to identify 

these variables, by multiplying the physical value of parameter ϵ as a multiplication factor of different grades. 

𝑛i, 𝑛𝑒, 𝜗𝑖𝑥 , 𝜗𝑒𝑥, 𝜗𝑖𝑦, 𝜗𝑒𝑦, 𝐸𝑥 , 𝐸𝑦, 𝐵z are spread in the chains of forces according to ϵ as following: 

𝑛j = 1 + 𝜖𝑛j
(1)

+ 𝜖2𝑛j
(2)

+ ⋯ 

𝑣j𝑥 = 0 + 𝜖𝑣j𝑥
(1)

+ 𝜖2𝑣j𝑥
(2)

+ ⋯ 

𝑣j𝑦 = 𝜖3/2𝑣j𝑦
(1)

+ 𝜖5/2𝑣j𝑦
(2)

+ ⋯                                                 (43) 

𝐵z = 1 + 𝜖𝐵𝑧
(1)

+ 𝜖2𝐵𝑧
(2)

+ ⋯ 

𝐸𝑥 = 𝜖3/2E𝑥
(1)

+ 𝜖5/2E𝑥
(2)

+ ⋯ 

𝐸𝑦 = 𝜖E𝑦
(1)

+ 𝜖2E𝑦
(2)

+ ⋯ 

j = e, I, p we can have the following equations by the compensation of equation (41) in (29 to 40) and 

comparing of quantities between ϵ and 𝜖3/2  

𝑣𝑖𝑥
(1)

= 𝑣𝑒𝑥
(1)

= E𝑦
(1)

= 𝑣𝑝𝑥
(1)

                                                                   (44) 

𝑛𝑖
(1)

= 𝑛𝑒
(1)

= 𝑛𝑝
(1)

= 𝐵𝑧
(1)

=
𝑣𝑝𝑥

(1)

𝑣𝑚
                                                       (45) 

E𝑥
(1)

= [

2β
3𝑣𝑚

σ1 − 𝑣𝑚

(1 + 𝛿)
]
𝜕𝑣𝑝𝑥

(1)

𝜕𝜉
                                                                  (46) 

𝑣𝑖𝑦
(1)

= [
δ(

2β
3𝑣𝑚

σ1 − 𝑣𝑚)

(1 + 𝛿)
]
𝜕𝑣𝑝𝑥

(1)

𝜕𝜉
                                                           (47) 

𝑣𝑒𝑦
(1)

= [
(𝑣𝑚 −

2β
3𝑣𝑚

σ1)

(1 + 𝛿)
−

2β

3𝑣𝑚
]
𝜕𝑣𝑝𝑥

(1)

𝜕𝜉
                                               (48) 

𝑣𝑝𝑦
(1)

= [
(𝑣𝑚 −

2β
3𝑣𝑚

σ1)

(1 + 𝛿)
−

2βσ

3𝑣𝑚
]
𝜕𝑣𝑝𝑥

(1)

𝜕𝜉
                                                 (49) 

The velocity of the phase of the magneto acoustic wave was obtained as following:    

𝑣𝑚 =
√

1 +
2
3 (

1
1 − 𝑝 +

𝑝𝜎
1 − 𝑝 + σ1)𝛽

(1 + 𝛿)
                                                   (50) 

It can be noticed from this equation that the velocity of the phase of the shock wave is related to:  

𝑝 =
𝑛𝑝𝑜

𝑛𝑒0
, σ =

𝑇𝐹𝑝

𝑇𝐹𝑒
 , β = 𝑉𝑠

2 𝑉𝐴𝑖
2⁄  δ =

𝑉𝐴𝑖
2

c2 , σ1 =
𝑇𝑖

𝑇𝐹𝑒
 , 

Which means that these quantities have an important role in changing the velocity 𝜗𝑚 especially 𝑝 =
𝑛𝑝𝑜

𝑛𝑒0
 

By comparing of quantities between 𝜖5/2 , ϵ using the same technique we used above and which leads to 

following equations:  

−𝑣𝑚

∂𝑛𝑖
(2)

∂ξ
+

∂𝑛𝑖
(1)

∂𝜏
+

∂𝑣𝑖𝑥
(2)

∂ξ
+

𝜕

∂ξ
(𝑛𝑖

(1)
𝑣𝑖𝑥

(1)
) = 0                               (51) 

∂𝑣𝑖𝑥
(1)

∂τ
− 𝑣𝑚

∂𝑣𝑖𝑥
(2)

∂ξ
+ 𝑣𝑖𝑥

(1) ∂𝑣𝑖𝑥
(1)

∂ξ
= E𝑥

(2)
+ 𝑣𝑖𝑦

(2)
+ 𝑣𝑖𝑦

(1)
𝐵𝑧

(1)
−

2β

3
σ1

𝜕𝑛𝑖
(2)

𝜕𝜉
 + 𝜂0  

𝜕2𝑣𝑖𝑥
(1)

𝜕𝜉2
 (52) 
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−𝑣𝑚

∂𝑣𝑖𝑦
(1)

∂ξ
= E𝑦

(2)
− 𝑣𝑖𝑥

(2)
− 𝑣𝑖𝑥

(1)
𝐵𝑧

(1)
                                                   (53) 

−𝑣𝑚

∂𝑛𝑒
(2)

∂ξ
+

∂𝑛𝑒
(1)

∂𝜏
+

∂𝑣𝑒𝑥
(2)

∂ξ
+

𝜕

∂ξ
(𝑛𝑒

(1)
𝑣𝑒𝑥

(1)
) = 0                              (54) 

0 = −E𝑥
(2)

− 𝑣𝑒𝑦
(2)

− 𝑣𝑒𝑦
(1)

𝐵𝑧
(1)

−
2

3
𝛽

∂𝑛𝑒
(2)

∂ξ
+

𝐻𝑒
2

4

∂3𝑛𝑒
(1)

∂ξ3
                 (55) 

0 = −E𝑦
(2)

+ 𝑣𝑒𝑥
(2)

+ 𝑣𝑒𝑥
(1)

𝐵𝑧
(1)

                                                                    (56) 

−𝑣𝑚

∂𝑛𝑝
(2)

∂ξ
+

∂𝑛𝑝
(1)

∂𝜏
+

∂𝑣𝑝𝑥
(2)

∂ξ
+

𝜕

∂ξ
(𝑛𝑝

(1)
𝑣𝑝𝑥

(1)
) = 0                                 (57) 

0 = E𝑥
(2)

+ 𝑣𝑝𝑦
(2)

+ 𝑣𝑝𝑦
(1)

𝐵𝑧
(1)

−
2

3
𝛽𝜎

∂𝑛𝑝
(2)

∂ξ
+

𝐻𝑝
2

4

∂3𝑛𝑝
(1)

∂ξ3
                   (58) 

0 = E𝑦
(2)

− 𝑣𝑝𝑥
(2)

− 𝑣𝑝𝑥
(1)

𝐵𝑧
(1)

                                                                     (59) 

−𝑣𝑚

𝜕𝐵𝑧
(2)

∂𝜉
+

𝜕𝐵𝑧
(1)

∂𝜏
+

∂E𝑦
(2)

∂𝜉
= 0                                                             (60) 

𝑣𝑖𝑥
(2)

+ 𝑛𝑖
(1)

𝑣𝑖𝑥
(1)

−
1

1 − 𝑝
𝑣𝑒𝑥

(2)
−

1

1 − 𝑝
𝑛𝑒

(1)
𝑣𝑒𝑥

(1)
+

𝑝

1 − 𝑝
𝑣𝑝𝑥

(2)
+

𝑝

1 − 𝑝
𝑛𝑝

(1)
𝑣𝑝𝑥

(1)
− 𝑣𝑚δ

∂E𝑥
(1)

∂𝜉
= 0 (61) 

−
𝜕𝐵𝑧

(2)

∂𝜉
= 𝑣𝑖𝑦

(2)
+ 𝑛𝑖

(1)
𝑣𝑖𝑦

(1)
−

1

1 − 𝑝
𝑣𝑒𝑦

(2)
−

1

1 − 𝑝
𝑛𝑒

(1)
𝑣𝑒𝑦

(1)
+

𝑝

1 − 𝑝
𝑣𝑝𝑦

(2)
+

𝑝

1 − 𝑝
𝑛𝑝

(1)
𝑣𝑝𝑦

(1)
+ δ

∂E𝑦
(1)

∂𝜏
− 𝑣𝑚δ

∂E𝑦
(2)

∂𝜉
 (62) 

The Common mathematical solution of (50) – (61) leads to KDVB in plane coordinates  

𝜕𝑣𝑝𝑥
(1)

𝜕𝜏
+ 𝐴𝑣𝑝𝑥

(1) 𝜕𝑣𝑝𝑥
(1)

𝜕𝜉
+ 𝐵

𝜕3𝑣𝑝𝑥
(1)

𝜕𝜉3
+ 𝐶

𝜕2𝑣𝑝𝑥
(1)

𝜕𝜉2
= 0                           (63) 

𝐴 = [3 +
2δ(

2β
3𝑣𝑚

σ1 − 𝑣𝑚)

(1 + 𝛿)
+

8𝑝𝛽𝜎

3(1 − 𝑝)𝑣𝑚
2 ] [

6 + 2σ1 + 4(
1

1 − 𝑝
+

𝑝𝜎
1 − 𝑝

)𝛽

3𝑣𝑚
2 ]−1 (64) 

𝐵 =

[
 
 
 δ𝑣𝑚 (

2β
3𝑣𝑚

σ1 − 𝑣𝑚)
2

(1 + 𝛿)
−

1 + 𝑝

1 − 𝑝

𝐻2

4𝑣𝑚

]
 
 
 

                                        (65) 

𝐶 = −𝜂0[
6 + 2σ1 + 4(

1
1 − 𝑝 +

𝑝𝜎
1 − 𝑝)𝛽

3𝑣𝑚
2 ]−1                                    (66) 

 By using (Tanh) method (9) we can have the KDVB solution which represents the shock wave: 

𝑣𝑝𝑥
(1)(𝜉) = 

3𝐶2

25𝐴𝐵
𝑠𝑒𝑐ℎ2 [

𝐶

10𝐵
(𝜉 − 𝑢𝜏)] +

6𝐶2

25𝐴𝐵
[1 − tanh[

𝐶

10𝐵
(𝜉 − 𝑢𝜏)]] (67) 

3. RESULTS AND DISCUSSION  

 In this research, we obtained the (KDVB) from (QMHD) equations using reductive perturbation method 

after taking the ionic temperature in consider where it was disregard in reference (8) by adding the limit which 

represents the ionic pressure to the ionic movement equation  

It was noticed that the temperature has an effect on the phase velocity of the magneto acoustic shock wave 

when this proportion was found σ1 =
𝑇𝑖

𝑇𝐹𝑒
  

In (50) and this correspond with the results that were found by S. Hussain, S .Mahmood and A. Mushtaq, as (31) in 

reference (8) shows : 𝑣𝑚 = √
1+

2

3
(

1

1−𝑝
+

𝑝𝜎

1−𝑝
)𝛽

(1+𝛿)
  

It was found by comparing between (31) (original reference) and (50) (that we have found), that σ1  has an 

effect on the velocity of shock wave by its existence in the numerator of (50) equation which increases the phase 

velocity of the wave. 

It should be noticed that our study of the plane magnetic acoustic shocks in plasma (e-p-i) where the 

proportion was p in relation (50) which represents the intensity of positron 𝑛𝑝𝑜 to the electron 𝑛𝑒𝑜  in the case of the 

balanced environment of plasma to determine the effect of σ1 on the phase velocity of the magnetic acoustic wave 
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𝑣𝑚 in terms of 𝑝 =
𝑛𝑝𝑜

𝑛𝑒0
 which has been found in reference (8), then the changes of the velocity of the phase of the 

magnetic acoustic wave which has been found in reference (8) after neglecting the ionic temperature in relation (31) 

of the reference (8) , and the relation of the velocity of the phase which found in this study in relation (50) in terms 

of 𝑝 =
𝑛𝑝𝑜

𝑛𝑒0
 using ( MATLAB) method as the graph (1) shows. Ultra - high – intensity plasma parameters have been 

taken in consideration, such as non-linear parameter A and diffusion parameter B Parameter of dispersion, the 

intensity of the magnetic field also take values into this account domain: 𝐵0 = 109 − 1011Gauss. 
Positrons intensity: 𝑛0𝑝 = 0.4 × 1028𝑐𝑚−3 

Ions intensity: 𝑛0𝑖 = 0.6 × 1028𝑐𝑚−3  
Electrons intensity: 𝑛0𝑒 = 1028𝑐𝑚−3  
Temperature: 𝑇 = 8000 − 40.000 𝐾 
Fermi temperature of the electrons: 𝑇F𝑒 = 9.1166 × 106K  
Fermi temperature of the positrons: 𝑇F𝑒 = 4.9493 × 106K 
Fermi temperature of ions: 𝑇F𝑖 = 3537K 
Figure.1, shows that curve ϑ𝑚(𝑝) 
Moved after the ionic temperature was taken in consideration, it can be noticed that the speed decreases in 

both curves ϑ𝑚 =
ϑ𝑒,𝑝

V𝐴𝑖
 

Inversely with the increasing of 𝑝 =
𝑛𝑝𝑜

𝑛𝑒0
 and the value of  𝜗𝑚(𝑃) also increases  

As ∆ϑ m=0.01 when P=0, so this concludes that taking the ionic temperature in consideration increases the 

accuracy of relative velocity. 

In addition, it has been shown that ionic temperature has a clear effect on the damping speed through the 

appearance of σ1 in the energy loss coefficient. This proportion in the numerator of the relation (66) leads to the 

increasing of this coefficient and so the increasing of the damping speed, and the existence of σ1 in different positions 

of both relations nonlinear coefficient (64) dissipation limit (65) affects the damping speed too. And to determine 

the effect of σ1 =
𝑇𝑖

𝑇𝐹𝑒
 on the damping speed, we found a solution of shock wave which is in relation (52) in the 

original reference (8), the solution that we found in this research (67), and the curves in graph (2).  

It can be noticed that the damping speed have increased clearly after the ionic temperature has been taken in 

consideration, the graph (2) showed the increasing of the kinematic viscosity as ∆𝜗𝑝𝑥 = 4 × 10−7 

Also affects the damping speed which appears in the relation of dissipation limit C where it increases as 

∆𝜗𝑝𝑥 = 0.011when the increases from  𝜂0 = 0.001 𝑡𝑜 𝜂0 = 0.0015 . As graph (3) in reference (8) shows :  

  
Graph.1. The changes of the velocity of the phase of 

the magnetic acoustic shock wave 𝒗𝒎 in terms of 

proportion p in two cases 

Graph.2. Shows the effect of the damping speed 

(the fine line) comparing to the original reference 

(the thick line) (Hussain, 2013) 

 

 
Graph.3. The increasing of damping speed of the magnetic acoustic shock due to the changing in 

kinematic viscosity of the ionic liquid from 𝜼𝟎 = 𝟎. 𝟎𝟎𝟏 (the dotted line) to 𝜼𝟎 = 𝟎.𝟎𝟎𝟏𝟓  

(the continuous Line) 
a- entering the ionic temperature into calculation (the fine line). 

b-without entering the ionic temperature into calculation (the thick line). 
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4. CONCLUSION  
Reductive perturbation method enables us to reduce the equations of the study of plasma by the 

approximation of (QMHD) to (KDVB) which has shock solutions and enables us to get the relation of the phase 

velocity of the shock, so it can be studied the properties of these waves such as their intensity, the impact of external 

disturbances such as magnetic fields, and parameters), the intensity of plasma, its components (electrons, ions, 

positrons, charged grains of the dust), the mass of these components, the temperature of plasma, Fermi temperature 

of the components of the plasma, as well as quantum effects such as quantum diffraction effects which appears by 

adding the limit of the force that associated with Bohm's potential to the kinematic equations of the electrons and 

positrons on the formation and spread of these waves.   
It should be noted that the numerical study of these waves become easier with the use of computer programs. 

We used the program MATLAB in our research to find out the general form 𝑝 =
𝑛𝑝𝑜

𝑛𝑒0
 of the change of velocity of the 

spread of the shock wave sequentially and the form of the change of the shock wave sequentially the standard 

variable𝜂 = 𝜉 − 𝑢𝜏 which associated with the position and time.  

There are several methods for solving nonlinear partial differential equations that we did not mention, but 

some of them was mentioned in reference. 

We propose to study the effect of ionic temperature on the formation and spread of soliton waves in ultra-

intensity magnetic (electron-positron-ion) by neglecting the dissipation limit in equation (63). We get the (KDV) 

formula with soliton solutions.  
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