STUDY OF DIURETIC ACTIVITY OF AQUEOUS AND ALCHEHOLIC EXTRACT OF THE ROOT OF *HOMONOA RIPARIA* LOUR

B. N. SATISH KUMAR, V. MADHAVAN, S.N. YOGANARSHIMAN, ARCHANASWAMY, JYOTHIM JOY

1 Gautham College of Pharmacy, RT Nagar, Bangalore, Karnataka, India 560032
2 M. S. Ramaihaha college of Pharmacy, Bangalore, Karnataka, India 560054.
3 Sri Vidhyaniketan College of Pharmacy, Tirupati, Andhra Pradesh, India 517102.

ABSTRACT

In the Indian system of medicine, *Homonoia riparia* Lour. (Euphorbiaceae) root part is claimed to possess powerful diuretic activity. However, the diuretic potential of root is not yet investigated. The aim of this study was to evaluate the diuretic potential of aqueous extract (AEHR) and 95% of ethanol extract of the root of *Homonoia riparia* Lour (EEHR) in rats. Different concentrations of AEHR and EEHR (250 and 500 mg/kg b.w) were per orally administered (n = 6 per each treatment group) to hydrated rats and their urine output was monitored over a period of 5 h after drug administration. Different parameters viz. total urine volume, urine concentration of electrolytes such as sodium, potassium and chloride have been evaluated. The rats treated with AEHR and EEHR (250 and 500mg/kg; p.o.) showed higher urine volume when compared to respective control. Excretion of cations (sodium and potassium ions) and anions (chloride ions) in both AEHR and EEHR also increased significantly with respect to the control group. The elevated diuretic potential of AEHR and EEHR was statistically significant (P < 0.001) and comparable to that of standard furosemide (10mg/kg; p.o.). The present study shows that the drug has significant diuretic activity. This study suggests that the active component(s) in AEHR and EEHR had similar diuretic effect to that of furosemide. These results validate the traditional use of *H. riparia* as a diuretic agent.

KEY WORDS: *Homonoia riparia*, Urinary volume, Diuretic activity.

1. INTRODUCTION

Increasing urine and electrolytes excretion may be beneficial in the treatment of fluid overload, like acute and chronic renal failure, hypercalcemia and cirrhosis of liver and also as an antihypertensive agent (McVeigh, 1995). A number of diuretics like mannitol, thiazides, furosemide, and ethacrine acid are used in practice. Still there is a need for more effective and less toxic diuretic. Many indigenous drugs have been claimed to have diuretic effect in Ayurveda system of medicine but they were not properly investigated. Among the several plants *Musa sapientum* L. (Musaceae) (Jain, 2007), *Cleome rutidosperma* (Capparidaceae) (Bose, 2006; Bose, 2007), *Cardiospermum halicacabum* Linn. (Sapindaceae) (Chandraprakash, 2008), *Portulaca oleracea* (Portulacaceae) (Pagar, 2007), *Aerva lanata* (Linn.) Juss. ex Schult. (Amaranthaceae) (Vetrichelvan, 2000), *Cocos nucifera* (Areacaeae) (Babetti and Rathil, 2006) have shown excellent diuretic activity.

Corresponding author

Email: satish02p@rediffmail.com
Mobile: 099164 88119

Volume-3 issue-3 July - Sept’2010
in albino rats (Prasad, 1997). There is paucity of data about the pharmacological activities of Homonoia riparia, which prompted us to pursue this pharmacological evaluation of H. riparia root to verify the medicinal property. Therefore, the present study was undertaken to evaluate the diuretic activity of AEHR and EEHR in normal rats.

2. MATERIAL AND METHOD

Plant materials

The roots of Homonoia riparia Lour. were collected from Thenmalai forest, Kerala state. The taxonomic identification of the plant was established by Dr. S. N Yoganarizhaman, Research co-ordinator, Department of pharmacognosy, M.S Ramaiah college of Pharmacy, Bangalore and a voucher specimen (No 28) has been kept in our laboratory for furture reference.

Preparation of extract

The roots were dried under sunlight, powdered in the hammer mill and passed through sieve no 60 and store in air tight container. The dried, powdered roots were extracted using 95% ethanol in a soxhlet extraction apparatus. The extract cleared of ethanol by distillation under reduced pressure which was kept in the desicator and a weighed amount of the extract was dissolved in normal saline for the experiment. The dried, powdered root was macerated with chloroform: water (1:1000) for 24 hours, the solvent was evaporated to dryness. Preliminary qualitative chemical analysis of the both extract indicated the presence of phytosterols, tannins and phenolic compounds, carbohydrates and glycosides, gums and mucilage.

Animals

Swiss albino mice weighing 18-30 g of either sex were used for acute toxicity studies and male albino rats of Wistar strain, in the weight range of 200-250 g were used for diuretic activity studies. The animals was purchased from Sri venkateswara enterprises, Bangalore and housed in the animal house of M. S. Ramaiah College of Pharmacy, Bangalore at least 2 weeks prior to the study, so that animals could adapt to the new environment. Animal house was well maintained under standard hygienic conditions, at a temperature (22 ± 2°C), room humidity (60 ± 10%) with 12 h day and night cycle, with food and water ad libitum.

Acute toxicity study

Acute toxicity studies were carried out to study acute toxic effects of the drug and to determine minimum lethal dose of the drug extracts. The AEHR and EEHR were administered orally to separate groups of overnight fasted mice at doses of 30, 100, 300, 1000 and 3000 mg/kg. After administration of the extracts, the animals were observed continuously for the first three hours, for any toxic manifestation like increased motor activity, salivation, acute convulsion, coma and death. Thereafter, observations were made at regular intervals for 24 h (Gosh, 1984). Further, the animals were under observation up to a period of one week. On the basis of LD50, two doses were selected for detailed study.

Screening of diuretic activity (Vogel and Vogel, 2002; Bose, 2006)

The method of Lipschitz (1943) was employed for the assessment of diuretic activity, male albino rats weighing 200 - 250 g were selected, and the tail base was pressed to empty the bladder of remaining urine. The animals were divided into 6 groups of 6 each. Group I was maintained as control and administered 5ml/kg of normal saline p.o. Group II was maintained as Standard and administered 10 mg/kg of Furosemide p.o. Group III and IV were administered AEHR 250 and 500 mg/kg p.o. respectively. Group V and Group VI were administered EEHR 250 and 500 mg/kg body weight p.o. respectively. All animals were hydrated with 5 ml/kg of distilled water prior to drug administration. Animals were deprived of food and water 18 h before the experiment. They were hydrated with 5 ml/kg of water prior to drug/extract administration. Immediately after dosing, animals were placed in metabolic cages (2 in one cage), specially designed to separate urine and feaces. The urine was collected in measuring cylinder up to 5 h after dosing. During this period, animals were deprived of food and water. The parameters measured were total urine volume, urine concentration of Na⁺, K⁺ and Cl⁻. Concentration of Na⁺ and K⁺ were determined using Flame photometer (Jeffery, 1989). While Cl⁻ concentration was estimated titrimetrically using 0.02N AgNO₃ with 5% potassium chromate as indicator (Beckett, 1997; Indian Pharmacopoeia, 1996), appearance of brick red precipitate was taken as the end point.
The ratio, urinary excretion in test group:
Urinary excretion in control group has been used for the measure of diuretic action for the treated groups. Diuretic action = Urinary excretion in test group / Urinary excretion in control group
The relative diuretic potency can be determined by (VanArmar, 1954). To obtain the diuretic activity, Diuretic activity = Diuretic action of extract / Diuretic action of standard
The sum of Na⁺ and Cl⁻ excretion was estimated for sauliuretic activity. The ratio Na⁺/K⁺ was estimated as a natriuretic activity. The ratio Cl⁻ / Na⁺ + K⁺ (ion quotient) was derived to estimate carbonic anhydrase inhibition (Somova, 2003).

Statistical analysis
The data were expressed as Mean ± S.E.M. and statistically analyzed using one way ANOVA followed by Tukey-Kramer’s Multiple comparison test, P<0.05 was considered significant.

3. RESULTS
The hot extraction of coarse powder (50g) of H. riparia was carried out with 95% ethanol yielded 6.40% w/w and extraction of coarse powder with chloroform water yielded (2.59% w/w). The phytochemical analysis of the both extract showed the presence of phytoestrogens, phenolic compounds and tannins, carbohydrates and glycosides, gums and mucilage.

Acute toxicity study
No toxic symptoms or death was observed in any of the animals with either extracts up to the dose of 3000 mg/kg, till end of the study.

Effect on urine volume
Table I showed that, the cumulative urine volume was measured at 5th h of control (2.5±0.05) furosemide (5.4±0.115), aqueous 250 mg/kg (3.133±0.08), aqueous 500 mg/kg (3.6±0.152), alcohol 250 mg/kg (3.43±0.120), alcohol 500 mg/kg 3.63±0.233. The results were significant at p<0.001 with Furosemide and alcohol extract 500 mg/ kg; p<0.01 for aqueous extract 500 mg/ kg and alcohol extract 250 mg/kg, p<0.05 for aqueous extract 250 mg/ kg, when analyzed by Tukey - Kramer multiple comparison test. The urine volume of furosemide, aqueous extract and alcohol extract treated groups increased 2.16, 1.253, 1.44, 1.372 and 1.452 fold respectively when compared with the control group.

Effects on electrolyte excretion
Table II shows the diuretic responses with its electrolyte excretion potency of the AEHR and EEHR are highly significant in comparison with control animals. There was a significant increase (p<0.001) in urine concentration of Na⁺, K⁺, Cl⁻ in the treated groups.

Effect on natriuretic, sauliuretic and carbonic anhydrase inhibition
From the electrolyte excretion of Na⁺, K⁺ and Cl⁻ of AEHR and EEHR at both dose levels (250 mg and 500 mg/kg), the natriuretic (Na⁺/K⁺), sauliuretic (Na⁺ and Cl⁻) activity and carbonic anhydrase inhibition (Cl⁻/Na⁺ + K⁺) were estimated and compared with control. No carbonic anhydrase inhibition was detected. The natriuretic ratio of AEHR and EEHR 250 and 500 mg/kg were found as 1.220, 1.273, 1.249 and 1.281 compared to control 1.175 and is significant natriuretic. The significant sauliuretic activity is also been showed by both AEHR and EEHR.

Table I. AEHR and EEHR on urine volume and diuretic at 5th h in rat.

<table>
<thead>
<tr>
<th>Extract/Drug</th>
<th>Dose</th>
<th>Urine volume(ml)</th>
<th>Diuretic action</th>
<th>Diuretic activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>5ml of 0.9% NaCl/kg</td>
<td>2.5±0.057</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Furosemide</td>
<td>10 mg/kg</td>
<td>5.4±0.115***</td>
<td>2.16</td>
<td></td>
</tr>
<tr>
<td>Aqueous</td>
<td>250 mg/kg</td>
<td>3.133±0.08*</td>
<td>1.25</td>
<td>0.231</td>
</tr>
<tr>
<td>Aqueous</td>
<td>500 mg/kg</td>
<td>3.6±0.152**</td>
<td>1.44</td>
<td>0.266</td>
</tr>
<tr>
<td>Alcohol</td>
<td>250mg/kg</td>
<td>3.4±3.120**</td>
<td>1.37</td>
<td>0.254</td>
</tr>
<tr>
<td>Alcohol</td>
<td>500mg/kg</td>
<td>3.6±3.235**</td>
<td>1.45</td>
<td>0.268</td>
</tr>
</tbody>
</table>

Table II. AEHR and EEHR on electrolyte excretion, natriuretic and sauliuretic activity at 5th h in rat.

<table>
<thead>
<tr>
<th>Extract/Drug</th>
<th>Dose</th>
<th>Na⁺ (mEq/l)</th>
<th>K⁺ (mEq/l)</th>
<th>Cl⁻ (mEq/l)</th>
<th>Na⁺/K⁺ ratio</th>
<th>Na⁺-Cl⁻</th>
<th>CI⁻/Na⁺+K⁺</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>5ml of 0.9% NaCl/kg</td>
<td>14.06±0.028</td>
<td>12.0±0.076</td>
<td>45.2±1.12</td>
<td>1.17±0.1</td>
<td>59.4±2.1</td>
<td>0.82±0.01</td>
</tr>
<tr>
<td>Furosemide</td>
<td>10 mg/kg</td>
<td>72.4±0.834***</td>
<td>53.1±6.780***</td>
<td>106.2±2.56***</td>
<td>1.70±0.53</td>
<td>102.1±2.12</td>
<td>0.70±0.03</td>
</tr>
<tr>
<td>Aqueous</td>
<td>250 mg/kg</td>
<td>23.1±1.310***</td>
<td>32.4±6.374***</td>
<td>70.6±1.85***</td>
<td>1.22±0.33</td>
<td>100.3±1.24</td>
<td>0.70±0.53</td>
</tr>
<tr>
<td>Alcohol</td>
<td>500 mg/kg</td>
<td>57.3±1.930***</td>
<td>44.8±2.136***</td>
<td>89.2±1.57***</td>
<td>2.27±0.17</td>
<td>140.6±3.45</td>
<td>0.79±0.01</td>
</tr>
<tr>
<td>Alcohol</td>
<td>250 mg/kg</td>
<td>62.1±2.314***</td>
<td>49.3±4.788***</td>
<td>89.2±1.57***</td>
<td>2.27±0.17</td>
<td>140.6±3.45</td>
<td>0.79±0.01</td>
</tr>
<tr>
<td>Alcohol</td>
<td>500 mg/kg</td>
<td>68.2±3.359***</td>
<td>52.5±6.390***</td>
<td>120.4±1.80***</td>
<td>2.68±0.56</td>
<td>160±3.52</td>
<td>1.0±0.13</td>
</tr>
</tbody>
</table>

Values expressed as Mean ± S.E.M
One way ANOVA: p value found to be 0.0001 considered extremely significant (for parameters). Tukey-Kramer’s multiple comparison test *p<0.05, **p<0.01, ***p<0.001; when compared with the control group.
DISCUSSION

Acute toxicity studies help to evaluate the drug's acute toxic effect and to determine minimum lethal dose. It was found that both aqueous and alcohol extract of the H. riparia were safe up to a dose of 3000 mg/kg in Swiss albino mice. Both AEHR and EEHR produced significant dose dependent increase in urine volume as well as urine concentration of Na⁺, K⁺ and Cl⁻. The increase in the ratio of excreted sodium to potassium ion for the extracts in treated groups, compared to control, indicates that the extract increases sodium ion excretion to a greater extent than potassium. This is a very essential quality for a good diuretic. K⁺ excretion in aqueous extract 250 mg/kg and 500 mg/kg and alcohol extract 250 mg/kg body weight treated groups was less when compared with that of standard. These findings suggest that extracts of H. riparia possess a potassium sparing property. The drug also possesses significant saluretic activity.

The presence of polyphenolic compounds, carbohydrates, proteins in Portulaca oleracea (Hemanth, 2007) and steroids, tannin and carbohydrates in Hussiaea suffruticosa Linn. (Mythreyi, 2008) are reported to possess diuretic activity and natriuretic activity. Preliminary phytochemical analysis of the AEHR and EEHR revealed the presence of phenolic compounds and tannins, phytosterols, carbohydrates and glycosides, fixed oil and fats, gums and mucilage. These constituents in AEHR and EEHR may be responsible for the observed diuretic activity.

On the basis of results obtained, it is evident that both AEHR and EEHR possess effective hypernatraemic, hyperchloremic, and hyperkalaemic diuretic property, which provides the pharmacological evidence to support the folk claim for the root as an effective diuretic agent.

4. CONCLUSION.

In conclusion, the present study the results demonstrate that AEHR and EEHR possess significant effect on urinary excretion of water and electrolytes. It has shown that the active constituents in AEHR and EEHR had similar diuretic spectrum to that of furosemide. The results and this study substantiate the traditional use of this drug as one of the botanical sources of the drug Pashanabheda.

5. ACKNOWLEDGEMENTS

My thanks to The Management of M.S. Ramaiah College of Pharmacy, Bangalore and Gokula Education Foundation, Bangalore, for providing all facilities for this work.

REFERENCES

Indian Pharmacopoeia, Vol 2, Publications and Information Directorate (CSIR), New Delhi, India, 1996, 689.

